

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

flask_app

flask_app(self, key)

This module contains a class to create the REST API.

The flask_app class contains all the functions and utilities needed to provide
the REST API.

load_users

flask_app.load_users(self)

Load users for authorization purposes from the json file.

load_rooms

flask_app.load_rooms(self)

Load rooms for authorization purposes from the json file.

create_endpoints

flask_app.create_endpoints(self)

Create API endpoints.

index

flask_app.index(self)

Render the homepage.

gen

flask_app.gen(self, camera)

Camera generator for the actual tests.

gen_testcamera

flask_app.gen_testcamera(self, camera)

Camera generator for the test_camera endpoint.

compress_experiment

flask_app.compress_experiment(*args, **kwargs)

Compress the whole data corresponding to an experiment.

video

flask_app.video(*args, **kwargs)

Render the video page.

test_camera

flask_app.test_camera(*args, **kwargs)

Test the camera and return the image.

check_experiment

flask_app.check_experiment(*args, **kwargs)

Provide details of an experiment.

video_feed

flask_app.video_feed(*args, **kwargs)

Run the cameras in a room.

list_experiments

flask_app.list_experiments(*args, **kwargs)

List all the experiments.

clone_experiment

flask_app.clone_experiment(*args, **kwargs)

Clone experiment to the cloud.

delete_archive

flask_app.delete_archive(*args, **kwargs)

Delete the zip file.

status_room

flask_app.status_room(*args, **kwargs)

Check the status of a room.

delete_experiment

flask_app.delete_experiment(*args, **kwargs)

Delete an experiment with the given id.

label_experiment

flask_app.label_experiment(*args, **kwargs)

Create/Update the label of an experiment.

status_all_rooms

flask_app.status_all_rooms(*args, **kwargs)

Check the status of all rooms.

protected

flask_app.protected(*args, **kwargs)

Show logged username.

login

flask_app.login(self)

Login to the system.

logout

flask_app.logout(self)

Logout from the system.

user_loader

flask_app.user_loader(self, email)

Check if the user in the user.json file.

request_loader

flask_app.request_loader(self, request)

Handle each request.

unauthorized_handler

flask_app.unauthorized_handler(self)

If the user is unauthorized, direct him/her to the login page.

pose_img

flask_app.pose_img(self, exp_id, camera_id, img_id)

Employ pose detection on a single image.

pose_cam

flask_app.pose_cam(self, exp_id, camera_id)

Employ pose_detection on the all images with a given experiment and
the camera id.

pose_exp

flask_app.pose_exp(self, exp_id)

Given an experiment id to employ pose_detection on the whole images
collected from all the cameras.

match_people

flask_app.match_people(self, exp_id)

Match people based on feature matching algorithm.

make_thumbnails

flask_app.make_thumbnails(self, exp_id)

Create a thumbnail from an image, which contains only one person.

triangulate

flask_app.triangulate(self, exp_id)

Triangulate people’s locations.

log

flask_app.log(self)

Return the system logs. 10 lines.

log_n

flask_app.log_n(self, n)

Return n number of lines from the system logs.

Calibration Process for the Cameras

This document provides a brief explanation regarding the calibration process adopted in the project.
The necessity of the calibration process arises from the ill-defined nature of projective geometry forming the basis of the computer vision algorithms employed.
Hence, the calibration process referred in this document, is solely for the cameras employed in the project.

The further (strongly suggested) reading material can be found in Wikipedia [https://en.wikipedia.org/wiki/Camera_resectioning], OpenCV [https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html], Dissecting the Camera Matrix, Part 1: Extrinsic/Intrinsic Decomposition [https://ksimek.github.io/2012/08/14/decompose/], and another OpenCV tutorial [https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html].

It should be noted that in this document the reader is assumed to be somewhat familiar with the data acquisition system and the camera placement.

Table of Contents

	Calibration Process for the Cameras

	Table of Contents

	Method

	Tools

	Intrinsics Calibration with Camera Calibrator

	Extrinsics Calibration with Stereo Camera Calibrator

	Appendix

	Camera Names and Indices

	CEARS

	Computer Lab

Method

As can be seen the referred material, there are two types of calibration matrices need to be obtained in order to achieve stereo-triangulation: intrinsics and extrincins calibration (or parameters, or matrices).
Both are obtained with a similar fashion, i.e. using a chessboard with known dimensions.
For a fixed camera, a number of photos containing chessboard in them under different poses, the parameters of interests are obtained within an optimization framework.

The intrinsic parameters define how the optical characteristics of the camera unit function such as optical length of the lens, distortion coefficients etc.
Therefore, this information should/can be obtained for each camera individualy.

On the other hand, the extrinsic parameters define the location and attitude (will be referred as pose for brevity) of the camera in the global coordinate system.
This information is not so useful for monocular setups; therefore, it is customary to obtain extrinsics parameters for pairs of cameras.

Note: It should be noted that for the extrinsics parameters obtained from the contemprary tools are such that the first camera of the pair is assumed to be the global coordinate system while the extrinsic parameters represent the pose of the second camera with respect to the first.

Tools

In order to obtain the calibration matrices, we use Matlab and its prepackaged applications.
Matlab provides two different applications for camera calibration purposes: Camera Calibrator and Stereo Camera Calibrator.
Both of them were employed in different stages of the calibration process and will be introduced in the following sections.

Intrinsics Calibration with Camera Calibrator

The intrinsics parameters of the cameras employed in the study are obtained with Matlab package called Camera Calibrator [https://www.mathworks.com/help/vision/ref/cameracalibrator-app.html].
This application can be run as typing the command below:

cameraCalibrator

or starting from the Apps tab on top.

The workflow of the intrinsic calibration is summarized as below:

	Initialization

	Provide the path of the folder containing the chessboard photos.

	Provide the dimensions of the chessboard

	After providing the necessary information to the application, it runs a chessboard detection algorithm on the whole set of photos.

	After chessboard detection, the photos in which the chessboard is not detected are rejected.

	Setting the calibration process.

	Hit Options

	Choose Radial Distortion as 3 Coefficients

	Calibrate!

	Delete the photos with high reprojection error, until the mean of reprojection error goes down .75 pixels. (0.75 pixels is a the golden standard, this is a de-facto standard widely accepted in the Computer Vision society.)

	Recalibrate!

	Save the results to a mat file, note the parameters into the devices.json file.

Please note that in Step 6, the convention that Matlab uses is different that the developped software.
Matlab stores the intrinsic matrix as the transpose of the general convention.
Therefore, before typing the matrix into the devices.json file, make sure that the matrix is transposed.

In the repeated calibration sessions I had in my office, the below are the intrinsics parameters are valid for the cameras used in the study:

Intrinsics Matrix K:

[374.672, 0, 0; 0, 501.706, 0; 302.039, 247.027, 1];

Distortion Coefficients (radial and tangential) d:

[0.00170557, 0.00113633, 0.0927195, -0.20188, 0.0785958]

Extrinsics Calibration with Stereo Camera Calibrator

The extrinsics parameters are obtained with Stereo Camera Calibrator [https://www.mathworks.com/help/vision/ref/stereocameracalibrator-app.html] application provided by Matlab.
This application can be run as typing the command below:

stereoCameraCalibrator

or starting from the Apps tab on top.

The workflow of the extrinsics calibration is similar to that of intrinsics:

	Initialization

	Provide the path of the folder containing the chessboard photos.

	Provide the dimensions of the chessboard

	After providing the necessary information to the application, it runs a chessboard detection algorithm on the whole set of photos.

	After chessboard detection, the photos in which the chessboard is not detected are rejected.

	Setting the calibration process.

	Hit Use Fixed Intrinsics and Load Intrinsics from the workspace. (The same intrinsics for the both of the cameras!)

	Calibrate!

	Delete the photos with high reprojection error, until the mean of reprojection error goes down .75 pixels. (0.75 pixels is a the golden standard, this is a de-facto standard widely accepted in the Computer Vision society.)

	Recalibrate!

	Save the results to a mat file, note the parameters into the devices.json file.

Appendix

Camera Names and Indices

CEARS

ID	Name
—	——————————————————
0	usb-046d_Logitech_Webcam_C930e_3B43517E-video-index0
1	usb-046d_Logitech_Webcam_C930e_3B42507E-video-index0
2	usb-046d_Logitech_Webcam_C930e_64FE757E-video-index0
3	usb-046d_Logitech_Webcam_C930e_7EBB957E-video-index0
4	usb-046d_Logitech_Webcam_C930e_845F417E-video-index0
5	usb-046d_Logitech_Webcam_C930e_8C8B557E-video-index0
6	usb-046d_Logitech_Webcam_C930e_BBFF617E-video-index0
7	usb-046d_Logitech_Webcam_C930e_D047957E-video-index0

Computer Lab

ID	Name
—	——————————————————
0	usb-046d_Logitech_Webcam_C930e_8843357E-video-index0
1	usb-046d_Logitech_Webcam_C930e_23C6957E-video-index0
2	usb-046d_Logitech_Webcam_C930e_4191517E-video-index0
3	usb-046d_Logitech_Webcam_C930e_814F417E-video-index0
4	usb-046d_Logitech_Webcam_C930e_BF3E417E-video-index0
5	usb-046d_Logitech_Webcam_C930e_BD2F957E-video-index0
6	usb-046d_Logitech_Webcam_C930e_D3FFA67E-video-index0
7	usb-046d_Logitech_Webcam_C930e_5FD23C5E-video-index0

VideoCamera

VideoCamera(self, devices, room_name)

VideoCamera class contains image acquisition system.

VideoCamera class contains all the functions and utilities needed in the
actual image acquisition process.

get_frame

VideoCamera.get_frame(self, cam)

Given a cam object, read one image and return it.

get_all_frames

VideoCamera.get_all_frames(self, img_id)

Collect images from all the cameras.

This function’s role is 3-folds:

	Checks if we have at least 1 camera attached to the system.
Otherwise, the system reports the problem.

	Captures frames from all the cameras and saves it.

	Creates a montage from the images and returns it to the REST server.

save_img

VideoCamera.save_img(self, img, cam_id, img_id)

Save an image to a file.

	Checks if the folder exists. If it doesn’t exists, creates it.

	Constructs the image file name from cam_id img_id

	Saves the image to the file.

	Updates the metadata of the experiment for REST API.

computer_vision

computer_vision(self)

This module contains a class for primitive computer vision operations.

The computer_vision class contains all the functions and utilities needed
for the provide primitive computer vision operations.

triangulate

computer_vision.triangulate(P1, P2, points1, point2)

Triangulate corresponding points with given projection matrices.

extract_features

computer_vision.extract_features(img, thr=0.005)

Extract features from an image, return keypoints and descriptors.

match_meaturs

computer_vision.match_meaturs(desc1, desc2)

Match extracted descriptors, return good matching ones.

extract_thumbnail

computer_vision.extract_thumbnail(img, joints)

Extract a thumbnail from an image, containing only one person.

undistort_points

computer_vision.undistort_points(points, K, dist)

Undistort points to eliminate the lens distortion.

experiment

experiment(self, new_experiment=True, **kwargs)

This module contains a class providing the metadata of the experiments.

The experiment class contains all the functions and utilities needed for
containing experiment metadata.

update_metadata

experiment.update_metadata(self, **kwargs)

Update metadata with the given keyword arguments.

load_experiment

experiment.load_experiment(self, ts)

Load metadata from the the json file.

create_folders

experiment.create_folders(self, ts)

Create necessary folders needed for each experiment.

create_metadata

experiment.create_metadata(self, ts, camera_names, room)

Create a metadata with default values.

misc

misc(self)

Provide miscellaneous tools and functions.

list_subfolders

misc.list_subfolders(folder)

List subfolders of a given folder.

list_experiments

misc.list_experiments(folders)

Given a folder list experiments in it.

delete_folder

misc.delete_folder(folder)

Delete a folder provided in the argument.

delete_file

misc.delete_file(file)

Delete the file provided in the argument.

experiment_path

misc.experiment_path(exp_id)

Contruct the experiment path given the experiment id.

check_folder_exists

misc.check_folder_exists(folder)

Check if folder given in the argument exists or not.

check_file_exists

misc.check_file_exists(file)

Check if file given in the argument exists or not.

timestamp_to_date

misc.timestamp_to_date(ts)

Convert timestamps to time strings represented in EST time zone.

read_json

misc.read_json(fname)

Read json file and returns the data as a dict.

dump_json

misc.dump_json(fname, data, pretty)

Save the data to a json file.

Please note that data type should be json serializable, most primitive
Python data structure conforms this requirement.

get_md5hash

misc.get_md5hash(foo)

Create an MD5 hash of a string.

parse_rooms

misc.parse_rooms(json_data)

Parse the room data from the devices.json file.

create_folder

misc.create_folder(fname)

Create an empty folder.

find_images

misc.find_images(folder, ext='*.png')

Find images in a folder with a given extension.

If the extension of the images are not provided, it is assumed to
be .png

compress_folder

misc.compress_folder(source, destination)

Compress a folder with all subdirectories.

compress_folder_zip

misc.compress_folder_zip(source, destination)

Compress a folder with all subdirectories with Zip64 format.

run_process

misc.run_process(cmd)

Run a process and receives its return value.

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

